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Abstract. Natural disturbances are the dominant form of for-
est regeneration and dynamics in unmanaged tropical forests.
Monitoring the size distribution of treefall gaps is impor-
tant to better understand and predict the carbon budget in re-
sponse to land use and other global changes. In this study, we
model the size frequency distribution of natural canopy gaps
with a discrete power law distribution. We use a Bayesian
framework to introduce and test, using Monte Carlo Markov
chain and Kuo–Mallick algorithms, the effect of local phys-
ical environment on gap size distribution. We apply our
methodological framework to an original light detecting and
ranging dataset in which natural forest gaps were delineated
over 30 000 ha of unmanaged forest. We highlight strong
links between gap size distribution and environment, primar-
ily hydrological conditions and topography, with large gaps
being more frequent on floodplains and in wind-exposed
areas. In the future, we plan to apply our methodological
framework on a larger scale using satellite data. Addition-
ally, although gap size distribution variation is clearly under
environmental control, variation in gap size distribution in
time should be tested against climate variability.

1 Introduction

Natural disturbances caused by forest gaps play an impor-
tant role in tropical rainforest dynamics. Canopy gaps caused
by the death of one or more trees are the dominant form
of forest regeneration because the creation of canopy open-
ings continuously reshapes forest structure as gaps are filled

with younger trees (Whitmore, 1989). The first, and per-
haps most important, effect of gap occurrence is an imme-
diate increase in light intensity (Hubbell et al., 1999), allow-
ing sunlight to penetrate the understory. This phenomenon
has been widely studied because the opening of gaps con-
tributes to the establishment and growth of light-demanding
trees (Denslow et al., 1998), thus contributing to the main-
tenance of biodiversity. Another effect of canopy gaps is
the local modification of the forest nutrient balance (Rüger
et al., 2009). When canopy gaps are created, large amounts of
dead leaves and wood will be decomposed and mineralized
so that the availability of soil nutrients for neighboring trees
will increase (Brokaw, 1985). These nutrient patches are also
linked to small-scale spatial variations in forest carbon bal-
ance, as shown by (Feeley et al., 2007). The relationship be-
tween gap formation and the population dynamics of trees
or lianas is also quite well understood, with increased liana
basal area (Schnitzer et al., 2014) and low-wood-density pi-
oneer species that recruit exclusively in newly formed gaps
(Molino and Sabatier, 2001).

Many studies have investigated the effect of treefall gaps
on biodiversity, particularly animal communities (Bicknell
et al., 2014; Puerta-Piñero et al., 2013), on the carbon
cycles, and on forest dynamics. Some authors use field
data to study natural gap dynamics, usually at plot scale
(Hubbell et al., 1999). As these studies are quite limited
in spatial extent (< 50 ha) and because gap formation is
largely unpredictable (Hubbell et al., 1999; Lloyd et al.,
2009), optical satellite imagery has been widely promoted
and proven adequate for monitoring forest gaps over space
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and time (Frolking et al., 2009). At high resolution (< 10 m),
IKONOS satellite images may be well suited for evalu-
ating gap dynamics (Espírito-Santo et al., 2014). In French
Guiana, the SPOT-4 satellite (20 m spatial resolution) has
successfully detected canopy gaps (Colson et al., 2006) us-
ing a combination of several spectral bands, such as near and
short-wave infrared. However, topographical variation, gap
shape, and shade may influence and bias gap detection with
optical products. Moreover, persistent cloud cover, which is
common in many tropical forests, limits their utility.

Airborne light detecting and ranging (lidar) platforms
therefore offer a solution to this problem. Recent develop-
ments in lidar have significantly advanced our ability to de-
rive accurate measurements of canopy forest structure, to
detect gaps, and to assess the effect of spatial and tempo-
ral variation on carbon balance (Asner and Mascaro, 2014).
(Kellner and Asner, 2009) used remote lidar sensing to quan-
tify canopy height and gap size distributions in five tropi-
cal rain forest landscapes in Costa Rica and Hawaii. They
showed that canopy gaps can be observed with the help of
lidar-derived digital canopy models (DCMs) and that gap
size frequency distribution (GSFD) can be fit with a power
law distribution, suggesting a surprising similarity in canopy
gap size frequency distributions on diverse soil types with
different geologic substrate ages. (Asner et al., 2013) also
used lidar data to analyze whether gap size frequency dis-
tribution is modified by topographic and geologic character-
istics and again showed that canopy gap size distribution is
largely invariant between forests on erosional terra firme and
depositional floodplain substrates in the Peruvian Amazon
basin. Finally, using airborne lidar, Lobo and Dalling (2014)
have recently explored the effect of forest age, topography,
and soil type on canopy disturbance patterns across central
Panama. For the first time, they highlighted significant effects
of slope and of forest age, with a higher frequency of large
gaps associated with old-growth forests and gentle slopes.

In the present study, we use a DCM derived from air-
borne lidar across a 30 000 ha tropical forest landscape in
the Régina forest in French Guiana. This approach provides
high-resolution maps of canopy gaps and helps us to under-
stand the environmental determinism of gap occurrence in
tropical forests. Our specific aims were therefore

– to define canopy gaps from canopy height data using a
probabilistic approach;

– to model gap size distribution by inferring a likelihood-
explicit discrete power law distribution in a Bayesian
framework; and

– to introduce the environment into the scaling parame-
ter of the power law distribution and test its predictive
ability.

2 Materials and methods

The study site is located in the Régina forest (4◦ N, 52◦W),
where the most common soils are ferralitic. The site is lo-
cated on slightly contrasting plateau-type reliefs that are
rarely higher than 150 m on average. The forest is typical
of French Guianese rainforests. Dominant plant families in
the Régina forest include Burseraceae, Mimosoideae, and
Caesalpinoideae. The site receives 3806 mm of precipitation
per year, with a long dry season from mid-August to mid-
November and a short dry season in March (Wagner et al.,
2011).

2.1 Data source

2.1.1 Lidar data

Lidar data were acquired by aircraft in 2013 over 30 000 ha
of forest by a private contractor, Altoa (http://www.altoa.fr/),
using a Riegl LMS-Q560 laser. This system was composed
of a scanning laser altimeter with a rotating mirror, a GPS
receiver (coupled to a second GPS receiver on the ground),
and an inertial measurement unit to record the pitch, roll,
and heading of the aircraft. The laser wavelength was near-
infrared (from about 800 to 2500 nm). Flights were con-
ducted at 500 m above ground level with a ground speed of
180 km h−1, and each flight derived two acquisitions. The li-
dar was operated with a scanning angle of 60◦ and a 200 kHz
pulse repetition frequency. The laser recorded the last re-
flected pulse with a precision better than 0.10 m, with a den-
sity of 5 pulses m−2.

The DCM was derived from the raw scatter plot consist-
ing of the pooled dataset from the two acquisitions. Raw data
points were first processed to extract ground points using the
TerraScan (TerraSolid, Helsinki) ground routine, which clas-
sifies ground points by iteratively building a triangulated sur-
face model. Ground points typically made up less than 1 % of
the total number of the return pulses. The DCM has a resolu-
tion of 1 m. In order to avoid delineating “false” gaps due to
river beds, we remove areas very close to natural rivers with
a 20 m buffer applied to all shorelines. Additionally, a 25 m
buffer was applied to exclude anthropogenic tracks.

2.1.2 Environmental data

We use six environmental variables to synthesize the ob-
served environmental gradients. All variables were computed
from a lidar digital terrain model (DTM) with 5 m2 cells.

Slope

The slope was derived from the lidar DTM. Slope was com-
puted at a grid cell as the maximum rate of change in ele-
vation from that cell to its eight neighboring cells over the
distance between them.
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Topographic exposure

We use the TOPographic EXposure (TOPEX) index to
measure topographic exposure to wind (Chapman, 2000).
TOPEX is a variable that represents the degree of shelter
assigned to a location. It was derived from quantitative as-
sessment of horizon inclination. The values of this index are
closely correlated with the wind-shape index (Mikita and
Klimánek, 2012). Exposure is calculated based on the height
and distance of the surrounding horizon, which are combined
to obtain the inflection angle. We use this angle to quantify
topographic exposure (pixel resolution 5 m× 5 m). When a
large topographic feature, e.g., a mountain, is far off in the
distance, the inflection angle is low. When the same mountain
is closer, the inflection angle is higher. Therefore, a higher in-
flection angle is equal to lower exposure or higher sheltering
(Mikita and Klimánek, 2012).

Drained area

Drained area (DA) measures the surface of the hydraulic
basin that flows through a cell. A low value indicates that
a cell is located at the border between two basins, whereas
high values indicate cells located downstream.

Hydraulic altitude

The hydraulic altitude (HA) of each cell, its altitude above
the closest stream of its hydraulic basin, was computed from
the third-order hydraulic system. Low values, including 0,
indicate that the forest plot is potentially temporarily flooded,
whereas high values indicate that it is located on a hilltop.

Terrain ruggedness index

The terrain ruggedness index (TRI) captures the difference
between flat and mountainous landscapes. TRI was calcu-
lated using SAGA GIS (SAGA, 2013) as the sum of the alti-
tude change between a pixel and its eight neighboring pixels
(Riley, 1999).

The height above the nearest drainage

The height above the nearest drainage (HAND) model nor-
malizes topography with respect to the drainage network by
applying two procedures to the DTM. The initial basis for the
HAND model came from the definition of a drainage chan-
nel: perennial streamflow occurs at the surface, where the soil
substrate is permanently saturated. It follows that the terrain
at and around a flowing stream must be permanently satu-
rated, independently of the height above sea level at which
the channel occurs. Streamflow indicates the localized oc-
currence of homogeneously saturated soils across the land-
scape. The second basis for the HAND model came from the
distinctive physical features of water circulation. Land flows
proceed from the land to the sea in two phases: in restrained

flows at the hillslope surface and subsurface, and in freer
flows (or discharge) along defined natural channels (Nobre
et al., 2011).

2.2 Forest gap definition

2.2.1 Height threshold

To identify discrete canopy gaps, we had to choose a gap
threshold height. Some authors define this threshold at 2 m
(Brokaw, 1982). (Runkle, 1982) defines a gap as the ground
area under a canopy opening that extends to the base of the
surrounding canopy trees, these usually being considered to
be taller than 10 m, with a trunk diameter at breast height
(DBH) > 20 cm. However, in practice, defining gap bound-
aries is a tricky issue, even in the field. Here, we develop
a probabilistic method for detecting canopy gaps from lidar
data. We used the DCM to model canopy height distribution
considering a mixture distribution of two ecological states:
the natural variation of canopy height in mature forests, mod-
eled as a normal distribution, and the presence of forest gaps,
which lead to a new normal distribution with lower values.
We consider that the threshold between the two states is
equal to the 0.001th percentile of the height distribution of
the canopy; our results appeared robust to the threshold value
(see Appendix A). We then define canopy gaps as contiguous
pixels (in contact by edges or by vertices) at which the height
is less than or equal to the height threshold.

2.2.2 Minimum gap size

In our study, we define the minimum area of a gap as xmin.
We model the gap size frequency distribution with a power
law distribution. We use the Pareto distribution in a discrete
power law probability density function (Virkar and Clauset,
2014). These distributions have a negative slope and their
size frequencies are plotted on a logarithmic scale, allow-
ing us to infer the scaling parameter λ. A value close to 1
means a large number of large gaps. In other words, in forests
dominated by small canopy openings, values of λ are larger,
whereas smaller values of λ indicate an increased frequency
of large gap events (Fisher et al., 2008). In a discrete power
law with parameter λ, the probability for gap size x is given
by

p(x)=
x−λ

ζ(xmin,λ)
, (1)

where xmin is the lower truncation point and λ is the scaling
parameter.

The statistical analyses were performed in R (R Core
Team, 2013), making use of poweRlaw (Clauset et al., 2009)
and VGAM (Yee, 2010) packages.

We use a Kolmogorov–Smirnov (KS) distance criterion
order to determine the error between the observed distribu-
tion and the Pareto distribution. KS is defined as the max-
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imum distance between the cumulative distribution func-
tions (CDFs) of the data and the fitted function (Virkar and
Clauset, 2014). We retain, for the remainder of this study, a
minimum gap size area xmin= 104 m2, which minimized the
KS distance in our dataset.

2.3 Modeling gap size distribution

Having set the height threshold and minimum gap size, the
GSFD is modeled with a discrete Pareto distribution fre-
quency.

2.3.1 Model inference

We use a Bayesian framework to estimate model parameters.
Here, the value of a parameter is estimated by its posterior
distribution, which by definition is proportional to the prod-
uct of the likelihood of the model and the parameter prior dis-
tribution. The prior distribution is based on prior knowledge
of the possible values of a parameter. The posterior densi-
ties of the different parameters were estimated using a Monte
Carlo Markov chain algorithm (MCMC).

2.3.2 Metropolis–Hastings algorithm

As the model contains many parameters, we built a
Metropolis–Hastings (MH) algorithm in which all parame-
ters are updated together. Details on the algorithm are given
below:

– Y = y1,y2, . . .,yn is the gap size vector;

– X = xg1,xg2, . . .,xgi is the vector of covariates (envi-
ronmental variables) for gap g; and

– θ = θ1,θ2, . . .,θi is the model parameter vector.

The first values of the parameter vector are initialized as
t = 1, θ t ∼ π0

θ .
For each step t , a new parameter value is sampled from the

proposition distribution and a new vector of theta candidates
is generated.

θcand
∼ πprop (2)

Acceptance or rejection of the new candidate θcand is de-
termined by computing the likelihood ratio of the two dis-
crete Pareto distributions:

ρ(θ t ,θcand)=
L(Y |X,θcand)

L(Y |X,θ t )︸ ︷︷ ︸
likelihood

π0
θ (θ

cand)

π0
θ (θ

t )︸ ︷︷ ︸
prior

πprop(θ t )

πprop(θcand)︸ ︷︷ ︸
proposal

. (3)

The candidate θcand is accepted or rejected as follows:

u∼ U[0,1],θcand
{
θ t+1 if u < ρ(θ t ,θcand),

θ t if u > ρ(θ t ,θcand).
(4)

The algorithm is run for 1000 iterations. We use the me-
dian of the posterior densities to estimate parameter values,
and the distribution of the posterior densities to estimate pa-
rameter credibility intervals.

2.3.3 Univariate environmental effects

Variable transformation

To improve model inference, parameter significance and in-
terpretation, we first transformed some environmental vari-
ables:

slope = sqrt(slope) (5)
HAlt = log(HA+ 1) (6)

TOPEX = |max(TOPEX)− (TOPEX)| (7)

The environmental variables are then centered and scaled
with R function “scale”.

We first consider each environmental covariate indepen-
dently. These covariates are included one-by-one in the
model to constrain the exponent λ. We use the exponential
function to constrain λ, because the Riemann zeta function
only admits λ > 1.

λig = 1+ exp(θ0+ θi × varig), (8)

where λig is the λ value dependent on the value of environ-
mental variable i in gap g, θ0 is the intercept, and θi quan-
tifies the effect of covariates var on the gap size distribution
varig.

2.3.4 Multivariate model

Principal component analysis

We first investigated the collinearity of environmental data
through principal component analysis (PCA) of the normal-
ized environmental dataset.

Model

To build the final model, we used the results of the univariate
model (Table 1) and the PCA (Fig. 2) and set

λ=1+ exp(θ0+ θ1×Slope+ θ2×TOPEX
+ θ3×HAlt+ θ4×HAND). (9)

Variable selection

To select the significant covariates and build the final model,
we used the method proposed by (Kuo and Mallick, 1998)
(KM). This method consists of associating an indicator with
each variable vari and parameter θi . This indicator can take
two values: 1 or 0. If it is set to 1, the variable is included
in the model, but if the value is set to 0, it is not. We used

Biogeosciences, 14, 353–364, 2017 www.biogeosciences.net/14/353/2017/
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Figure 1. Canopy height distribution. Canopy height considered as a mixture distribution of two ecological features. The first (blue curve)
is the natural variation in canopy height, modeled as a normal distribution. The second (red curve) is linked to the presence of low heights
in the total canopy height distribution, likely to be due to a forest gap. We set the gap threshold to the 0.001th percentile of the blue curve
density, i.e., 11 m.

Table 1. List of environmental variables, abbreviations, units, and values of the posteriors in univariate models.

Parameter Abbreviation Unit Posterior value Confidence
interval

(CI 95%)

Slope Slope ◦ 0.0735 [−0.02; 0.15]
Terrain ruggedness index TRI – 0.0718 [0.04; 0.10]
TOPographic EXposure TOPEX – −0.082 [−0.12; −0.05]
Drained area DA m2

−0.0176 [−0.09; 0.05]
The hydraulic altitude HA m −0.0177 [−0.05; 0.02]
HAND HAND – −0.003 [−0.08; 0.09]

the MH and KM algorithms to estimate the indicators I and
infer their a posteriori distribution in addition to θ .

We start the KM algorithm with t = 1, θ t ∼ π0
θ ,I

t
j ∼

Ber(0.5) for j = 1, . . ., i. For each covariate j (selected in
random order), we use the MH algorithm to update θj . To
update Ij , we compute the ratio ρ (Eq. 10) and generate I t+1

j

from a Bernoulli distribution Bern(ρ):

ρ =
1

1+
L(Y |X̃,θ t ,Ij=0,I t

−j )

L(Y |X̃,θ t ,Ij=1,I t
−j )

. (10)

Model inference and data analysis were conducted with R
software (R Core Team, 2012). All maps and geographical
information were computed with SAGA (SAGA, 2013) and
ArcGIS 10.1.

www.biogeosciences.net/14/353/2017/ Biogeosciences, 14, 353–364, 2017
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Figure 2. Results of the principal component analysis of the envi-
ronmental variables.

3 Results

3.1 Gap delineation

In this study, we used a forest canopy height mixture model
to define the maximum height of a given pixel to be included
in a forest gap. This probabilistic method produced results
that fit the observed canopy height distribution. We retained
the 11 m threshold that corresponds to the 0.001th percentile
of the canopy height distribution (Fig. 1). Given this height,
we retained the surface xmin= 104 m2 that minimized the
KS distance between predictions and observations. Here, our
gap definition was therefore defined as an area > 104 m2, in
which the lidar measured canopy height is always ≤ 11 m.

3.2 Basic statistics

We mapped 12 293 gaps with vegetation ≤ 11 m in height.
The mean gap size was 236 m2 with a minimum gap size of
104 m2 and a maximum of 29 063 m2. The total gap area was
about 290 ha, or 1 % of the whole surveyed area. The ob-
served gap size distribution was modeled with a Pareto dis-
tribution (Fig. 3), leading to a scaling parameter λxmin of 2.6.

3.3 Univariate models

All variables had an effect on gap size distribution (Table 1).
The scaling coefficient λ is related to the ratio of small gaps
to large gaps, with values close to 1 indicating a higher fre-
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Figure 3. The observed gap size frequency distributions modeled as
a power law function with λ= 2.6.

quency of large gaps and vice versa. Parameter estimates for
slope and TRI show high occurrence of small gaps for large
values of the two variables. Contrarily, the effects of DA,
HAND, HAlt, and TOPEX on λ are clearly negative, mean-
ing that the frequency of large gaps increases with large val-
ues.

3.4 The multivariate model

To define the final multivariate predictive model, we used the
significant results of the univariate models together with the
output of the PCA, in order to avoid multicollinearity.

3.4.1 Variable selection

The first three PCA axes explained more than 80 % of the
data variance. The first axis, which accounted for 36.45 % of
the variance, was positively correlated with relative HAlt and
negatively correlated with HAND and DA, and thus clearly
highlighted the local altitudinal gradient. The second axis ex-
plained an additional 28.5 % of variance and was positively
correlated with the TRI and slope. The third axis explained
a further 15.2 % of the variance and was correlated only
with TOPEX (Fig. 2). The multivariate model was created
using a Bayesian framework including four environmental
variables: slope, TOPEX, HAND, and HAlt, the explanatory
variables that had an effect on λ. Finally, the KM method-
ological framework was used to select the most parsimonious
model.
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Figure 4. Results of the Kuo–Mallick algorithm for variable selec-
tion. Variables were included in the final model when their value
was close to 100 %: slope, TOPEX and HAND.

Environmental covariates with posterior KM values close
to 1, namely slope, TOPEX, and HAND (Eq. 9), were re-
tained in the final model (Fig. 4). Parameter estimates of the
final model indicated that the greatest effects on gap size dis-
tribution were caused by TOPEX and HAND.

4 Discussion

4.1 Methodology

4.1.1 Gap detection

Delineating forest gaps is a persistent challenge for foresters
and ecologists, among whom Brokaw’s gap definition (1982)
has remained extensively used, in which “a ‘hole’ in the for-
est extending through all levels down to an average height of
2 m above the ground,” must be defined by an experienced
observer. There are several studies that do not use this 2 m
threshold definition of gaps, but instead 10 m (e.g., Hubbell
et al., 1999; van der Meer and Bongers, 1996; Welden et al.,
1991). However, in this study we have decided to use a prob-
abilistic approach, modeling height distribution as a mixture
of two normal laws. We found a height, 11 m, which is much
higher than that in Brokaw’s definition but is consistent with
our field experience, where woody debris, dead canopy tree
boles, and residual saplings (i.e., remnants that survive the
gap formation event) may rise well above 2 m. For example,
(Hubbell et al., 1999) showed that small stems frequently
remained in gaps up to 4–5 m in height, while (Lieberman
et al., 1985) reported broken and damaged stems up to 10 m
tall within a gap. The choice of the values of height and

threshold may be adapted to different forest types and to-
pographic characteristics. In our case, the choice was fully
data-driven using the DCM and the digital elevation model
(DEM) and no ecological knowledge. Within our framework
it is likely that in waterlogged areas, areas covered with ma-
ture trees that do not exceed the height thresholds may ap-
pear in our analysis as forest gaps. In order to clarify this
question, an approach using time series would allow us to
identify these “false” gaps that never get filled and thus are
not part of the forest endogeneous dynamics. These are not
gaps in the ecological meaning.

Defining minimum gap size is also a delicate proposition.
Some authors, working with high-definition lidar data, have
considered a minimum gap size (xmin) of 1 m2 (Asner et al.,
2013; Kellner and Asner, 2009). This minimum gap size is
unrealistic from an ecological perspective given that a hole
of several square meters in the canopy may simply reflect
the distance between two crowns. Brokaw recommended a
range from 20 to 40 m2 based on his field experience. We
have worked with a minimum gap size of 104 m2, and based
this value on the minimized Kolmogorov–Smirnov distance
between observed and predicted values.

We built on previous studies that show that gap size distri-
bution follows a power law distribution. However, the under-
lying mechanisms that control this distribution are still un-
clear. The Bayesian framework we developed allowed us to
detail the contributions of each environmental variable to the
size of each individual gap. Because the precise environmen-
tal variables were explicitly taken into account in the model
likelihood of each gap, we were able to predict gap size dis-
tribution from environmental covariates, a difficult task when
the scale exponent is estimated once, at the forest level, and
compared between forests. The global scale exponent that
we estimated for an average environment (λ= 2.6) is con-
sistent with some previous studies (Kellner and Asner, 2009;
Kellner et al., 2011), though slightly larger than those of oth-
ers: (Lobo and Dalling, 2014), [1.97; 2.15], and (Asner et al.,
2013), [1.70; 2.03].

4.2 Environmental effects on gap size frequency
distribution

For the first time, gap size distribution integrates environ-
mental variables as a linear combination of the scale parame-
ter (λ) of a discrete Pareto distribution frequency. Our results
suggest that three covariates drive the gap size frequency dis-
tribution in our forest: slope, HAND, and TOPEX (Fig. 5).

4.2.1 Slope

Steep slopes are well known to directly impact tropical for-
est canopy structure (Bianchini et al., 2010). In this study,
we found similar results to (Lobo and Dalling, 2014) on
Barro Colorado Island (BCI); i.e., large gaps (smallest λ) are
more frequent on the gentle slopes. This may seem counter-
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Figure 5. Posterior distribution of the environmental variables in the final multivariate model.

intuitive at first, as treefall may be (i) more prone to inducing
cascading effects when slopes are steep and (ii) more fre-
quent in slopes where soils are shallow with lateral drainage
(Gourlet-Fleury et al., 2004), impeding deep rooting of trees.
However, the forest turnover is more important in bottom-
lands where slopes are gentle (Durrieu de Madron, 1994).
Considering that large gaps may be created solely by contigu-
ous and independent treefalls, larger gaps may then be ex-
pected in bottomlands from a purely probabilistic approach.
And given the positive link between wood density and steep
slopes (Ferry et al., 2010), trees may be more resistant to cas-
cading effects than they are in bottomlands.

4.2.2 Water saturation

HAND is a binary variable that takes the value 1 on water-
saturated soils. Because λ decreases when HAND equals 1,
the frequency of large gaps increases in floodplains and bot-
tomlands. These results support the findings of (Korning and
Balslev, 1994), highlighting more dynamic forests in flood-
plains subject to large flooding events that lead to cascad-
ing treefall events. Together with Asner et al. (2013), our
results suggest that we can effectively extend these results
to bottomlands, where we already know that aboveground
biomass and mean wood density are 10 % lower than on hill-
tops (Ferry et al., 2010). Given its ease of implementation on
a land-surface model and its high predictive power, HAND

covariates present great potential applicability for gap size
distribution prediction.

4.2.3 Topographic exposure

The effect of topographic exposure on λ is consistent with
our a priori hypothesis that wind-exposed areas would have
a greater relative frequency of large gaps. Although hurri-
cane damage does not occur in continental equatorial regions
of the Amazon (Nelson et al., 1994), here we demonstrate
that tree exposure has a large impact on gap size distribu-
tion. (Lobo and Dalling, 2014) observed no clear effect of
TOPEX, and suggested that this index has a slight negative
effect on gap size distribution. The results of this study are in
line with the pioneering work of Negrón-Juárez et al. (2014),
which showed that wind exposure is related to higher ele-
vations that inflate the occurrence of larger gaps. However,
coastal French Guianese forests exhibit different landscapes
and landforms (Guitet et al., 2013). Our study area is made
of dissected plateaus characterized by simple forms resem-
bling hills (Guitet et al., 2013). It is possible that these char-
acteristics, leading to unique combinations of landform ele-
vations, may create complex terrain interactions that increase
wind local speed and, in turn, cause large gaps. We conclude
that topographic exposure is an appropriate index for predict-
ing gap size distribution, but this must be confirmed in other
landscape types.
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5 Conclusions

To our knowledge, this is the first study where the precise
environmental descriptors associated with each canopy gap
were explicitly taken into account in the calculation of the
model likelihood. We were able to do so because we wrote
the general model likelihood as the product of all the single
likelihoods (i.e., each gap had its own likelihood depending
on the environmental covariate values). Doing so, we were
able to predict gap size distribution from the fine environ-
mental covariates, an impractical task when the scale expo-
nent is estimated once at the forest level (i.e., mixing all the
found gaps together) and compared between forests a poste-
riori. We also put forward an innovative method to define a
height threshold and minimum gap size using two probabilis-
tic approaches. The modeled distribution of canopy height as
a mixture of two distributions provides a clear height thresh-
old, while the minimization of KS distance between observed
and predicted data proves to be efficient for setting the min-
imum gap size. We use a Bayesian framework in which the

model likelihood of each gap is expressed as a function of
the unique environment local to the gap, highlighting the pre-
dominant role of the topographic exposure and waterlogging
in determining gap size distribution. We expected that slope
would also play an important role, with steeper slopes lead-
ing to larger gap sizes. However, we found that a steeper
slope led to smaller gaps, as already highlighted by (Lobo
and Dalling, 2014). We suggest that our modeling approach
can be a basis for the development of large-scale methodolo-
gies using satellite data to understand gap-phase dynamics at
a regional scale, combining lidar and radar remote sensing
tools.

6 Data availability

Datasets used in this study are the property of the French Na-
tional Forest Service, a private company. They are available
upon request at laurent.descroix@onf.fr.
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Appendix A

Table A1. List of environmental variables, abbreviations, units, and values of the posteriors in univariate models for a height threshold equal
to the 0.0001th percentile of the height distribution of the canopy.

Parameter Abbreviation Unit Posterior value Confidence
interval

(CI 95 %)

Slope Slope ◦ 0.119 [0.0416; 0.208]
Terrain ruggedness index TRI – 0.119 [0.083; 0.157]
TOPographic EXposure TOPEX – −0.128 [−0.188; 0.00202]
Drained area DA m2 0.0843 [−0.0574; 0.179]
The hydraulic altitude HAlt m −0.0135 [−0.04; 0.042]
HAND HAND – −0.0615 [−0.152; 0.0162]

Table A2. List of environmental variables, abbreviations, units, and values of the posteriors in univariate models for a height threshold equal
to the 0.001th percentile of the height distribution of the canopy.

Parameter Abbreviation Unit Posterior value Confidence
interval

(CI 95 %)

Slope Slope ◦ 0.0735 [−0.02; 0.15]
Terrain ruggedness index TRI – 0.0718 [0.04; 0.10]
TOPographic EXposure TOPEX – −0.082 [−0.12; −0.05]
Drained area DA m2

−0.0176 [−0.09; 0.05]
The hydraulic altitude HAlt m −0.0177 [−0.05; 0.02]
HAND HAND – −0.003 [−0.08; 0.09]

Table A3. List of environmental variables, abbreviations, units, and values of the posteriors in univariate models for a height threshold equal
to the 0.01th percentile of the height distribution of the canopy.

Parameter Abbreviation Unit Posterior value Confidence
interval

(CI 95 %)

Slope Slope ◦ 0.0975 [−0.02; 0.17]
Terrain ruggedness index TRI – 0.089 [0.05; 0.12]
TOPographic EXposure TOPEX – −0.012 [−0.03; −0.32]
Drained area DA m2

−0.004 [−0.08; 0.05]
The hydraulic altitude HAlt m 0.063 [−0.04 ; 0.08]
HAND HAND – −0.01 [−0.09; 0.06]
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